Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38610372

RESUMEN

The build-up of lactate in solid tumors stands as a crucial and early occurrence in malignancy development, and the concentration of lactate in the tumor microenvironment may be a more sensitive indicator for analyzing primary tumors. In this study, we designed a self-powered lactate sensor for the rapid analysis of tumor samples, utilizing the coupling between the piezoelectric effect and enzymatic reaction. This lactate sensor is fabricated using a ZnO nanowire array modified with lactate oxidase (LOx). The sensing process does not require an external power source or batteries. The device can directly output electric signals containing lactate concentration information when subjected to external forces. The lactate concentration detection upper limit of the sensor is at least 27 mM, with a limit of detection (LOD) of approximately 1.3 mM and a response time of around 10 s. This study innovatively applied self-powered technology to the in situ detection of the tumor microenvironment and used the results to estimate the growth period of the primary tumor. The availability of this application has been confirmed through biological experiments. Furthermore, the sensor data generated by the device offer valuable insights for evaluating the likelihood of remote tumor metastasis. This study may expand the research scope of self-powered technology in the field of medical diagnosis and offer a novel perspective on cancer diagnosis.


Asunto(s)
Nanocables , Neoplasias , Humanos , Ácido Láctico , Neoplasias/diagnóstico , Suministros de Energía Eléctrica , Electricidad , Microambiente Tumoral
2.
Acta Trop ; 254: 107177, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38518835

RESUMEN

Cryptosporidia (Cryptosporidium) is a protozoan that is widely parasitic in the intestinal cells of humans and animals, and it is also an important zoonotic parasite. However, there is no epidemiological investigation on Cryptosporidium spp. infection in infants with diarrhea of Inner Mongolia, the largest livestock region in China. To investigate the prevalence of Cryptosporidium, 2435 fresh fecal samples were collected from children with diarrhea in Inner Mongolia Maternal and Child Health Care Hospital. Molecular characterization of Cryptosporidium was carried out based on its 18S rRNA and gp60 gene sequences. The overall prevalence was 12.85% (313/2435), and in Hohhot (12.15%), it was lower than that in the surrounding city (14.87%) (P < 0.05). Moreover, Cryptosporidium was detected in different seasons and sexes. Concerning the age of children with diarrhea, the prevalence of those age groups between 0 and 1 was obviously lower than others, and there were significant differences in the prevalence at different ages (P < 0.001). Analysis of the 18S rRNA gene sequence revealed that all the positive samples were Cryptosporidium parvum, and there were 5 subtypes (IIdA23G3, IIdA24G3, IIdA24G4, IIdA25G3, and IIdA25G4). To the best of our knowledge, the above subtypes have not been reported. Our results provide a relevant basis for control and education on food safety and foodborne illness prevention.

3.
CNS Neurosci Ther ; 30(2): e14587, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38421142

RESUMEN

INTRODUCTION: Neonatal stress disrupts brain development and increases the risk of neurological disorders later in life. However, the impact of neonatal stress on the development of the glymphatic system and susceptibility to Parkinson's disease (PD) remains largely unknown. METHODS: Neonatal maternal deprivation (NMD) was performed on mice for 14 consecutive days to model chronic neonatal stress. Adeno-associated virus expressing A53T-α-synuclein (α-syn) was injected into the substantia nigra to establish PD model mice. Glymphatic activity was determined using in vivo magnetic resonance imaging, ex vivo fluorescence imaging and microplate assay. The transcription and expression of aquaporin-4 (AQP4) and other molecules were evaluated by qPCR, western blotting, and immunofluorescence. Animal's responses to NMD and α-syn overexpression were observed using behavioral tests. RESULTS: Glymphatic activity was impaired in adult NMD mice. AQP4 polarization and platelet-derived growth factor B (PDGF-B) signaling were reduced in the frontal cortex and hippocampus of both young and adult NMD mice. Furthermore, exogenous α-syn accumulation was increased and PD-like symptoms were aggravated in adult NMD mice. CONCLUSION: The results demonstrated that NMD could disrupt the development of the glymphatic system through PDGF-B signaling and increase the risk of PD later in life, indicating that alleviating neonatal stress could be beneficial in protecting the glymphatic system and reducing susceptibility to neurodegeneration.


Asunto(s)
Sistema Glinfático , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/metabolismo , Sistema Glinfático/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Sustancia Negra , Modelos Animales de Enfermedad
4.
Nat Commun ; 15(1): 1766, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409083

RESUMEN

The proper axial length of the eye is crucial for achieving emmetropia. In this study, we present a wireless battery-free eye modulation patch designed to correct high myopia and prevent relapse. The patch consists of piezoelectric transducers, an electrochemical micro-actuator, a drug microneedle array, µ-LEDs, a flexible circuit, and biocompatible encapsulation. The system can be wirelessly powered and controlled using external ultrasound. The electrochemical micro-actuator plays a key role in precisely shortening the axial length by driving the posterior sclera inward. This ensures accurate scene imaging on the retina for myopia eye. The drug microneedle array delivers riboflavin to the posterior sclera, and µ-LEDs' blue light induces collagen cross-linking, reinforcing sclera strength. In vivo experiments demonstrate that the patch successfully reduces the rabbit eye's axial length by ~1217 µm and increases sclera strength by 387%. The system operates effectively within the body without the need for batteries. Here, we show that the patch offers a promising avenue for clinically treating high myopia.


Asunto(s)
Miopía , Animales , Conejos , Reactivos de Enlaces Cruzados/farmacología , Modelos Animales de Enfermedad , Miopía/terapia , Esclerótica , Riboflavina
5.
BMC Med Res Methodol ; 24(1): 45, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389063

RESUMEN

BACKGROUND: Scoping reviews have emerged as a valuable method for synthesizing emerging evidence, providing a comprehensive contextual overview, and influencing policy and practice developments. The objective of this study is to provide an overview of scoping reviews conducted in Chinese academic institutions over the last decades. METHOD: We conducted a comprehensive search of nine databases and six grey literature databases for scoping reviews conducted in Chinese academic institutions. The reporting quality of the included reviews was assessed using the Preferred Reporting Items for PRISMA-ScR checklist. We performed both quantitative and qualitative analyses, examining the conduct of the scoping reviews and exploring the breadth of research topics covered. We used Chi-squared and Wilcoxon rank-sum tests to compare methodological issues and reporting quality in English and Chinese-language reviews. RESULTS: A total of 392 reviews published between 2013 and 2022 were included, 238 English-reported reviews and 154 Chinese-reported reviews, respectively. The primary purposes of these reviews were to map and summarize the evidence, with a particular focus on health and nursing topics. 98.7% of reviews explicitly used the term "scoping review", and the Arksey and O'Malley framework was the most frequently cited framework. Thirty-five English-reported scoping reviews provided a protocol for scoping review. PubMed was the most common source in English-reported reviews and CNKI in Chinese-reported reviews. Reviews published in English were more likely to search the grey literature (P = 0.005), consult information specialists (P < 0.001) and conduct an updated search (P = 0.012) than those in Chinese. Reviews published in English had a significantly high score compared to those published in Chinese (16 vs. 14; P < 0.001). The reporting rates in English-reported reviews were higher than those in Chinese reviews for seven items, but lower for structured summary (P < 0.001), eligibility criteria (P < 0.001), data charting process (P = 0.009) and data items (P = 0.015). CONCLUSION: There has been a significant increase in the number of scoping reviews conducted in Chinese academic institutions each year since 2020. While the research topics covered are diverse, the overall reporting quality of these reviews is need to be improved. And there is a need for greater standardization in the conduct of scoping reviews in Chinese academic institutions.


Asunto(s)
Revisiones Sistemáticas como Asunto , China , Bases de Datos Factuales , Lenguaje , Revisiones Sistemáticas como Asunto/normas
6.
PLoS One ; 18(12): e0294919, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38096328

RESUMEN

In view of the problem that removing abnormal plants in breeding rape requires a large amount of labor and is inefficient, combined with the planting requirements of breeding rape, a shovel-tooth end-effector was designed, and a shovel-tooth removal test bench was built. A simulation model based on MBD (Multibody Dynamics)-DEM (Discrete Element Method) coupling was constructed. Then we conducted a Box-Behnken test with four factors and three levels. Taking the angle of soil penetration, speed of soil penetration, depth of soil penetration and speed of shovel-tooth gathering as the test factors, the soil penetration force and shovel-tooth gathering force as the test indicators. The mathematical regression model between test indicators and test factor was established. After optimizing the parameters of the model, the best combination of parameters with low soil penetration force and low shovel-tooth gathering force was obtained: angle of soil penetration of 84°, speed of soil penetration of 9 cm/s, depth of soil penetration of 8cm, and speed of shovel-tooth gathering of 6 cm/s. The simulation model was validated by field experiments. The average soil penetration force and average shovel-tooth gathering force of the three groups of pull-out tests were 34.8 N and 763.0 N, respectively. The removal rates were 96%, 92%, and 94%, all greater than 90%, indicating that the removal effect of the shovel-tooth end-effector was good, and the parameters were reasonably designed. The results can serve as reference for the design of rape abnormal plants removal device and the operation of MBD-DEM coupling simulation end-effector.

7.
Adv Sci (Weinh) ; 10(36): e2302731, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957541

RESUMEN

The effective and targeted treatment of resistant cancer cells presents a significant challenge. Targeting cell ferroptosis has shown remarkable efficacy against apoptosis-resistant tumors due to their elevated iron metabolism and oxidative stress levels. However, various obstacles have limited its effectiveness. To overcome these challenges and enhance ferroptosis in cancer cells, we have developed a self-powered photodynamic therapeutic tablet that integrates a ferroptosis inducer (FIN), imidazole ketone erastin (IKE). FINs augment the sensitivity of photodynamic therapy (PDT) by increasing oxidative stress and lipid peroxidation. Furthermore, they utilize the Fenton reaction to supplement oxygen, generating a greater amount of reactive oxygen species (ROS) during PDT. Additionally, PDT facilitates the release of iron ions from the labile iron pool (LIP), accelerating lipid peroxidation and inducing ferroptosis. In vitro and in vivo experiments have demonstrated a more than 85% tumor inhibition rate. This synergistic treatment approach not only addresses the limitations of inadequate penetration and tumor hypoxia associated with PDT but also reduces the required medication dosage. Its high efficiency and specificity towards targeted cells minimize adverse effects, presenting a novel approach to combat clinical resistance in cancer treatment.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Resultado del Tratamiento , Prótesis e Implantes , Hierro
8.
Metabolites ; 13(4)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37110170

RESUMEN

This study evaluated the effects of dietary soybean lecithin (SBL) on the growth, haematological indices, immunities, antioxidant capabilities, and inflammatory and intestinal barrier functions because little information of dietary SBL could be obtained in juvenile largemouth bass (Micropterus salmoides). The fish were fed identical diets except for SBL added at 0, 2, 4 and 8%. It was found that 4 and 8% SBL significantly increased fish weight gain and daily growth rate (p < 0.05), while 4% SBL was optimal for enhancing RBC, HGB, PLT, MCV, MCH, WBC and MON in blood, and ALB and ALP in serum (p < 0.05). SBL (4%) also significantly elevated the antioxidant enzymes activities of T-SOD, CAT, GR, GPx, GST and T-AOC and GSH contents; increased mRNA transcription levels of Nrf2, Cu/Zn-SOD, CAT, GR, GST3 and GPx3; and decreased MDA contents. Keap1a and Keap1b levels were markedly down-regulated (p < 0.05). SBL (4%) significantly enhanced levels of the immune factors (ACP, LZM and C3) and the mRNA expression levels of innate immune-related genes (C3, C4, CFD, HEPC and MHC-I) compared with the control groups (0%) (p < 0.05). SBL (4%) significantly increased IgM and T-NOS in the intestine (p < 0.05) and significantly decreased levels of TNF-α, IL-8, IL-1ß and IFN-γ and increased TGF-ß1 at both transcription and protein levels in the liver and intestine (p < 0.05). The mRNA expression levels of MAPK13, MAPK14 and NF-κB P65 were significantly decreased in the intestine in the 4% SBL groups (p < 0.05). Histological sections also demonstrated that 4% SBL protected intestinal morphological structures compared with controls. This included increased intestinal villus height and muscular thickness (p < 0.05). Furthermore, the mRNA expression levels of the intestinal epithelial cell tight junction proteins (TJs) (ZO-1, claudin-3, claudin-4, claudin-5, claudin-23 and claudin-34) and mucin-5AC were significantly up-regulated in the 4% SBL groups compared with the controls (p < 0.05). In conclusion, these results suggested that 4% dietary SBL could not only improve growth, haematological indices, antioxidant capabilities, immune responses and intestinal functions, but also alleviate inflammatory responses, thereby providing reference information for the feed formulations in cultured largemouth bass.

9.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982301

RESUMEN

Psb28 is a soluble protein in the photosystem II (PSII) complex, but its role in the drought stress response of wheat remains unclear. Here, we functionally characterized the TaPsb28 gene, which positively regulates drought tolerance in wheat. When the full-length 546-bp TaPsb28 cDNA was transferred into Arabidopsis thaliana, it was located in the guard cell chloroplast around the stroma. Overexpression of TaPsb28 conferred drought tolerance, as exhibited by the increases in the survival rate. Transgenic plants maintained lower MDA content and higher chlorophyll content by inducing chlorophyll synthase (ChlG) gene transcription. The content of abscisic acid (ABA) and zeatin increased significantly in wild-type (WT) plants under drought stress, and the transcriptional expression levels of RD22, dihydroflavonol 4-reductase (DFR) and anthocyanin reductase (ANR) genes were induced, thus enhancing the contents of endogenous cyanidin, delphinidin, and proanthocyanidins. However, in transgenic plants, although anthocyanins were further aggregated, the ABA increase was inhibited, zeatin was restored to the control level under drought stress, and stomatal closure was promoted. These findings indicate ABA and zeatin have opposite synergistic effects in the process of drought tolerance caused by TaPsb28 because only after the effect of zeatin is alleviated can ABA better play its role in promoting anthocyanin accumulation and stomatal closure, thus enhancing the drought tolerance of transgenic plants. The results suggest that overexpression of TaPsb28 exerts a positive role in the drought response by influencing the functional metabolism of endogenous hormones. The understanding acquired through the research laid a foundation for further in-depth investigation of the function of TaPsb28 in drought resistance in wheat, especially its relationship with anthocyanidin accumulation.


Asunto(s)
Arabidopsis , Arabidopsis/fisiología , Antocianinas/farmacología , Resistencia a la Sequía , Triticum/fisiología , Zeatina/farmacología , Estrés Fisiológico , Plantas Modificadas Genéticamente/metabolismo , Ácido Abscísico/metabolismo , Sequías , Oxidorreductasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
10.
Nanotechnology ; 34(19)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36745907

RESUMEN

Self-powered wearable sensing systems have attracted great attention for their application in continuous health monitoring, which can reveal real-time physiological information on the body. Here, an innovative self-powered sound-driven humidity sensor for wearable intelligent dehydration monitoring system has been proposed. The sensor is primarily comprised of PTFE membrane, ZnO nanoarrays and Ti thin film. The piezoelectric/triboelectric effect of ZnO nanoarrays/PTFE membrane is coupled with the humidity sensing process. Sound wave can drive PTFE membrane to vibrate, and the contact and separation between PTFE and ZnO can generate electrical signals through piezoelectric/triboelectric effect. At the same time, the surface of the nanostructures can absorb the water molecules, which will influence the electrical output of the device. The device can convert sound energy into electrical output without any external electricity power supply, and the outputting voltage decreases with increasing relative humidity, acting as the sensing signal. The sensor has been integrated with data processing unit and wireless transmission module to form a self-powered wearable intelligent dehydration monitoring system, which can actively monitor the humidity of exhaled breath and transmit the information to the mobile phone. The results can open a possible new direction for the development of sound-driven gas sensors and will further expand the scope for self-powered nanosystems.


Asunto(s)
Dispositivos Electrónicos Vestibles , Óxido de Zinc , Humanos , Humedad , Deshidratación , Politetrafluoroetileno
11.
Appl Opt ; 61(26): 7608-7617, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36256360

RESUMEN

An asymmetric double-image encryption scheme based on chaotic random phase encoding (CRPE) is proposed. In this proposed encryption scheme, two grayscale images to be encrypted are first Fresnel transformed and combined into a complex image. Then, the amplitude and phase components are obtained by conducting phase-amplitude truncation on the complex image. Finally, the amplitude component is again Fresnel transformed and encrypted into a noise-like pattern by the CRPE in the Fresnel domain. Since the initial values and control parameters of the chaotic map can replace the random phase masks to serve as secret keys, the management and transmission of secret keys will become more convenient in the proposed encryption scheme. Furthermore, the Fresnel transform parameters and phase keys derived from the complex image's phase component can also act as secret keys during the decryption process. Numerical simulations have demonstrated the feasibility, security, and robustness of the proposed encryption scheme.

12.
Nanoscale ; 14(34): 12483-12490, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-35983766

RESUMEN

Heat stroke that may cause acute central nervous system dysfunction, multiple organ dysfunction and even death has become a typical health problem in tropical developing countries. The primary goal of heat stroke treatment is to lower core body temperature, which necessitates physical or medical cooling in time. Here, we design a new self-powered wearable brain-machine-interface system for real-time monitoring and regulating body temperature. This system can monitor body temperature in real time and transmit neural electrical stimulation signals into specific brain regions to lower the body temperature. The whole system can work without an external power supply and be powered by the body itself through the piezoelectric effect. The system comprises a temperature detecting unit, a power supply unit, a data processing module, and a brain stimulator. Demonstration of the system with stimulation electrodes implanted in the median preoptic nucleus brain region in mice reveals an evident decrease in body temperature (1.0 °C within 15 min). This self-powered strategy provides a new concept for future treatment of heat stroke and can extend the application of brain-machine-interface systems in medical care.


Asunto(s)
Interfaces Cerebro-Computador , Golpe de Calor , Dispositivos Electrónicos Vestibles , Animales , Temperatura Corporal , Encéfalo/fisiología , Ratones
13.
Plants (Basel) ; 11(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35807627

RESUMEN

Pollination success is essential for hybrid oilseed rape (OSR, Brassica napus) seed production, and the pollination method has some influences on the OSR plant growth traits. In order to explore the roles of different pollination methods, four pollination methods of "unmanned agricultural aerial system" (UAAS), "natural wind + UAAS" (NW+UAAS), "honeybee" (HB), and "no pollinators" (NP) were set in a hybrid OSR field to investigate their effects on OSR plant traits and rapeseed yields in this study. The control check (CK) area with natural wind (NW) pollination was set as a reference for comparison. The experiments were conducted continuously for 20 days during the OSR plant early to full-bloom stage. The results based on the evaluated OSR plants showed that the growth traits and the rapeseed yields exhibited some differences under different pollination methods. The average plant height under NP pollination was maximum, which was 231.52 cm, while the average plant heights under the other pollination methods exhibited nearly no difference. Except for the HB pollination, the average first-branch heights of the evaluated plants all exceeded 100 cm under the other pollination methods. The average once branch quantity of all the evaluated plants under different pollination methods was 5-7. The average number of effective siliques per plant varied greatly. The average quantity of effective siliques in each OSR plant was about 160 under UAAS, NW+UAAS, and NW pollination, about 100 under HB pollination, and only 2.12 under NP pollination. The thousand-rapeseed weight was 7.32 g under HB pollination, which was the highest of all of the pollination areas. In terms of rapeseed yield, the average rapeseed yields per plant were all more than 10 g, except for the one under NP pollination; the yield per hectare was highest under NW+UAAS pollination, reaching 4741.28 kg, and the yield under NP pollination was lowest, which was only 360.39 kg. The research results provide technical support for supplementary pollination in hybrid OSR seed production.

14.
Nanoscale ; 14(12): 4671-4678, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35262127

RESUMEN

A self-powered wearable brain-machine-interface system with pulse detection and brain stimulation for ceasing action has been realized. The system is composed of (1) a power supply unit that employs a piezoelectric generator and converts the mechanical energy of human daily activities into electricity; (2) a neck pulse biosensor that allows continuous measurements of carotid pulse by using a piezoelectric polyvinylidene fluoride film; (3) a data analysis module that enables a coordinated brain-machine-interface system to output brain stimulation signals; and (4) brain stimulating electrodes linked to the brain that implement behavioral intervention. Demonstration of the system with stimulating electrodes implanted in the periaqueductal gray (PAG) in running mice reveals the great effect of forced ceasing action. The mice stop their running within several seconds when the stimulation signals are sent into the PAG brain region (inducing fear). This self-powered scheme for neural stimulation realizes specific behavioral intervention without any external power supply, thus providing a new concept for future behavior intervention.


Asunto(s)
Interfaces Cerebro-Computador , Dispositivos Electrónicos Vestibles , Animales , Encéfalo , Suministros de Energía Eléctrica , Electrodos , Ratones
15.
Biosensors (Basel) ; 12(3)2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35323434

RESUMEN

Neonatal jaundice refers to the abnormality of bilirubin metabolism for newborns, and wearable transcutaneous bilirubin meters for real-time measuring the bilirubin concentration is an insistent demand for the babies' parents and doctors. In this paper, a self-powered wearable biosensor in a baby diaper for real-time monitoring neonatal jaundice has been realized by the hydrovoltaic-biosensing coupling effect of ZnO nanoarray. Without external power supply, the system can work independently, and the hydrovoltaic output can be treated as both the power source and biosensing signal. The working mechanism is that the hydrovoltaic output arises from the urine flowing on ZnO nanoarray and the enzymatic reaction on the surface can influence the output. The sensing information can be transmitted through a wireless transmitter, and thus the parents and doctors can treat the neonatal jaundice of babies in time. This work can potentially promote the development of next generation of biosensors and physiological monitoring system, and expand the scope of self-powered technique and smart healthcare area.


Asunto(s)
Técnicas Biosensibles , Ictericia Neonatal , Dispositivos Electrónicos Vestibles , Óxido de Zinc , Técnicas Biosensibles/métodos , Suministros de Energía Eléctrica , Humanos , Recién Nacido , Ictericia Neonatal/diagnóstico
16.
Front Plant Sci ; 13: 1087636, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36777541

RESUMEN

In aerial spraying of plant protection UAVs, the continuous reduction of pesticides is an objective process. Under the condition of constant flight state (speed and altitude), the change of pesticide loading will inevitably lead to the shift of lift force and rotor speed generated by UAV rotor rotation, which will change the distribution of the rotor flow field and affect the effect of aerial spraying operation of plant protection UAV. Therefore, the rotor speed of UAV is taken as the research object in this paper, and the adaptive refinement physical model based on the Lattice Boltzmann Method (LBM) is used to numerically simulate the rotor flow field of the quadrotor plant-protection UAV at different speeds. A high-speed particle image velocimeter (PIV) was used to obtain and verify the motion state of the droplets emitted from the fan nozzle in the rotor flow field at different speeds. The results show that, with the increase of rotor speed, the maximum velocity and vorticity of the wind field under the rotor increase gradually, the top wind speed can reach 13m/s, and the maximum vorticity can reach 589.64s -1. Moreover, the maximum velocity flow value is mainly concentrated within 1m below the rotor, and the maximum vorticity value is primarily concentrated within 0.5m. However, with the increase of time, the ultimate value of velocity and vorticity decreases due to the appearance of turbulence, and the distribution of velocity and vorticity are symmetrically distributed along the centre line of the fuselage, within the range of (-1m, 1m) in the X direction. It is consistent with the motion state of droplets under the action of the rotor downwash flow field obtained by PIV. The study results are expected to reveal and understand the change law of the rotor flow field of plant protection UAVs with the dynamic change of pesticide loading to provide a theoretical basis for the development of precise spraying operation mode of plant protection UAVs and improve the operation effect.

17.
Front Cell Infect Microbiol ; 11: 753721, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746028

RESUMEN

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has currently spread worldwide, leading to high morbidity and mortality. As the putative receptor of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) is widely distributed in various tissues and organs of the human body. Simultaneously, ACE2 acts as the physiological counterbalance of ACE providing homeostatic regulation of circulating angiotensin II levels. Given that some ACE2 variants are known to cause an increase in the ligand-receptor affinity, their roles in acquisition, progression and severity of COVID-19 disease have aroused widespread concerns. Therefore, we summarized the latest literature and explored how ACE2 variants and epigenetic factors influence an individual's susceptibility to SARS-CoV-2 infection and disease outcome in aspects of ethnicity, gender and age. Meanwhile, the possible mechanisms for these phenomena were discussed. Notably, recombinant human ACE2 and ACE2-derived peptides may have special benefits for combating SARS-CoV-2 variants and further studies are warranted to confirm their effects in later stages of the disease process. As the uncertainty regarding the severity and transmissibility of disease rises, a more in-depth understanding of the host genetics and functional characteristics of ACE2 variants will not only help explain individual clinical differences of the disease, but also contribute to providing effective measures to develop solutions and manage future outbreaks of SARS-CoV-2.


Asunto(s)
COVID-19 , Enzima Convertidora de Angiotensina 2 , Humanos , Polimorfismo Genético , SARS-CoV-2
18.
Nanomicro Lett ; 12(1): 105, 2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-34138107

RESUMEN

We fabricated wearable perspiration analyzing sites for actively monitoring physiological status during exercises without any batteries or other power supply. The device mainly consists of ZnO nanowire (NW) arrays and flexible polydimethylsiloxane substrate. Sweat on the skin can flow into the flow channels of the device through capillary action and flow along the channels to ZnO NWs. The sweat flowing on the NWs (with lactate oxidase modification) can output a DC electrical signal, and the outputting voltage is dependent on the lactate concentration in the sweat as the biosensing signal. ZnO NWs generate electric double layer (EDL) in sweat, which causes a potential difference between the upper and lower ends (hydrovoltaic effect). The product of the enzymatic reaction can adjust the EDL and influence the output. This device can be integrated with wireless transmitter and may have potential application in constructing sports big data. This work promotes the development of next generation of biosensors and expands the scope of self-powered physiological monitoring system.

19.
Bioinformatics ; 36(4): 1277-1278, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31504195

RESUMEN

SUMMARY: Many efforts have been made in developing bioinformatics algorithms to predict functional attributes of genes and proteins from their primary sequences. One challenge in this process is to intuitively analyze and to understand the statistical features that have been selected by heuristic or iterative methods. In this paper, we developed VisFeature, which aims to be a helpful software tool that allows the users to intuitively visualize and analyze statistical features of all types of biological sequence, including DNA, RNA and proteins. VisFeature also integrates sequence data retrieval, multiple sequence alignments and statistical feature generation functions. AVAILABILITY AND IMPLEMENTATION: VisFeature is a desktop application that is implemented using JavaScript/Electron and R. The source codes of VisFeature are freely accessible from the GitHub repository (https://github.com/wangjun1996/VisFeature). The binary release, which includes an example dataset, can be freely downloaded from the same GitHub repository (https://github.com/wangjun1996/VisFeature/releases). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Proteínas , Programas Informáticos , Algoritmos , Alineación de Secuencia , Análisis de Secuencia de ADN
20.
Sensors (Basel) ; 19(15)2019 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-31357659

RESUMEN

Self-powered piezoelectric-biosensing textiles for the physiological monitoring and time-motion analysis of individual sports have been developed. The material system is composed of tetrapod-shaped ZnO nanowires on common textiles. The mechanism is based on the coupling of enzymatic reaction (LOx and lactate) and piezoelectric effect. After conformably attaching the device to the athlete, the device can monitor in real-time the moving speed, frequency, joint angle, and sweat lactate concentration of the athlete. The whole monitoring/analysis process is battery-free. The motor skills and physiological state of two athletes are investigated using the textiles, and different lactate threshold times and maximum lactate release capacities have been obtained. This technique can help them develop distinct training programs. This research is a new direction for the scientific monitoring of kinematics and may also stimulate the development of self-powered wearable sports-related systems.


Asunto(s)
Técnicas Biosensibles , Monitoreo Fisiológico , Nanocables/química , Deportes , Suministros de Energía Eléctrica , Humanos , Movimiento (Física) , Sudor , Textiles , Óxido de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...